Snowmass conference July 23 2022

Generalized Symmetries

Shu-Heng Shao
Yang Institute for Theoretical Physics
Stony Brook University

Snowmass white paper arXiv: 2205.09545 with Clay Cordova, Thomas Dumitrescu, and Kenneth Intriligator See also McGreevy arXiv:2204.03045

Symmetry

- Symmetry has proven, from time and again, to be of fundamental importance for describing Nature.
- In recent years, there has been a revolution in our understanding of global symmetries.
- The notion of global symmetry has been generalized in different directions.
- These generalized global symmetries are some of the few **universally applicable** tools to analyze general quantum systems, not limited to supersymmetric or solvable models.

Generalized global symmetries

- These new symmetries lead to several surprising consequences:
 - generalized 't Hooft anomaly matching conditions
 - new implications for the phase diagram of gauge theories
 - new organizing principles of topological phases in condensed matter physics
 - new insights into naturalness problems
- Active collaboration between experts from high energy physics, condensed matter physics, quantum gravity, and mathematics.
- In this talk I'll discuss only some of these developments. Please see the white paper for more references. I apologize in advance for the variety of fascinating papers that are not discussed below.

Many other generalizations of global symmetries not discussed here, e.g. dipole symmetry, asymptotic symmetry,...

Generalizations

Higher-form symmetries

e.g. center symmetry in gauge theory

Subsystem symmetries

e.g. fractons

Non-invertible symmetries

e.g. Ising model, 4d Maxwell theory, QED, QCD...

Symmetry and topology

- Consider a QFT in d-spacetime dimensions with a conserved Noether current $\partial_{\mu}j^{\mu}=0$. We can define a (d-1)-form $J_{\mu_1\cdots\mu_{d-1}}=\epsilon_{\mu_1\cdots\mu_d}j^{\mu_d}$.
- The conserved U(1) symmetry operator is

$$U_{\theta} = \exp(i\theta \int d^{d-1}x \, j^0) = \exp(i\theta \int d^{d-1}x \, J_{1\cdots(d-1)})$$

• For a relativistic QFT, the time direction is on the same footing as any other spatial direction [Einstein 1905]. We can therefore integrate the current on a general closed (d-1)-manifold M in d-dimensional Euclidean spacetime:

$$U_{\theta}(M) = \exp(i\theta \oint_{M} J)$$

• The conservation equation $\partial_{\tau}U_{\theta}=0$ is now <u>upgraded</u> to the fact that $U_{\theta}(M)$ depends on M only topologically (divergence theorem).

Ordinary global symmetry

Properties of	Ordinary symmetry	Example: $U(1)$
symmetry op.	$U_g(M^{(d-1)})$	$\exp(i\theta \oint_{M^{(d-1)}} J^{(d-1)})$
Codimension	1	$J^{(d-1)}$ is a $d-1$ -form
in spacetime		
Topological	yes	$J^{(d-1)}$ is closed, $dJ^{(d-1)} = 0$
Fusion rule	group	U(1)
	$U_{g_1}U_{g_2} = U_{g_1g_2}$	$U_{\theta_1}U_{\theta_2} = U_{\theta_1 + \theta_2}$

Next, we generalize the ordinary global symmetry by modifying the above conditions.

Generalized global symmetries

Properties of symmetry op.	Ordinary symmetry	Higher-form symmetry	Subsystem symmetry	Non-invertible symmetry
Codimension in spacetime	1	> 1	> 1	≥ 1
Topological	yes	yes	not completely but conserved in time	yes
Fusion rule	group $g_1 \times g_2 = g_3$	$group$ $g_1 \times g_2 = g_3$	$group$ $g_1 \times g_2 = g_3$	category $\mathcal{D} \times \mathcal{D}^{\dagger} \neq 1$

Higher-form Symmetry

Global symmetries and generalizations

Properties of symmetry op.	Ordinary symmetry	Higher-form symmetry	Subsystem symmetry	Non-invertible operator
Codimension in spacetime	1	> 1	> 1	≥ 1
Topological	yes	yes	not completely but conserved in time	yes
Fusion rule	group $g_1 \times g_2 = g_3$	$group \\ g_1 \times g_2 = g_3$	group $g_1 \times g_2 = g_3$	category $\mathcal{D} \times \mathcal{D}^{\dagger} \neq 1$

Higher-form symmetries and anomalies

[Gaiotto-Kapustin-Seiberg-Willett 2014,...]

- The simplest example of higher-form symmetries is the one-form center symmetry in gauge theory. E.g. \mathbb{Z}_N center symmetry in SU(N) Yang-Mills theory. It acts on the Wilson lines, rather than the local operators.
- Higher-form global symmetries can have anomalies, which prevent us from gauging them. These anomalies lead to generalized 't Hooft anomaly matching conditions. Nontrivial constraints on renormalization group flows.
- E.g. SU(2) pure gauge theory at $\theta=\pi$ has a mixed anomaly between CP and the \mathbb{Z}_2 one-form center symmetry. The low energy phase cannot be trivially gapped with a non-degenerate ground state. (Contrast with the expectation at $\theta=0$.) [Gaiotto-Kapustin-Komargodski-Seiberg 2017]

Higher-groups

- Higher-group symmetry: mixture of higher-form symmetries of different degrees [Kapustin-Thorngren 2013, Tachikawa 2017, Cordova-Dumitrescu-Intriligator 2018-2020, Benini-Cordova-Hsin 2018,...]. Analogous to group extensions.
- Higher-groups exist in many quantum systems in diverse dimensions: 2+1d Chern-Simons matter theories, 3+1d gauge theories, 5+1d supersymmetric theories...
- Dynamical consequences. E.g. Constraints on the 3+1d axion-Yang-Mills theory [Hidaka-Nitta-Yokokura 2020-2021, Brennan-Cordova 2020].

Subsystem Symmetry

Generalized global symmetries

Properties of symmetry op.	Ordinary symmetry	Higher-form symmetry	Subsystem symmetry	Non-invertible symmetry
Codimension in spacetime	1	> 1	> 1	≥ 1
Topological	yes	yes	not completely but conserved in time	yes
Fusion rule	group $g_1 \times g_2 = g_3$	group $g_1 \times g_2 = g_3$	group $g_1 \times g_2 = g_3$	category $\mathcal{D} \times \mathcal{D}^{\dagger} \neq 1$

Subsystem symmetry

- There are many interesting lattice models, such as fractons, exhibiting subsystem symmetries.
- The subsystem symmetry charges are supported on certain higher-codimensional manifolds L in space (E.g. straight lines on a plane) [..., Paramekanti-Balent-Fisher 2002, ...]. They depend NOT only on the topology of the manifolds.
- The number of subsystem symmetry charges generally depends on the number of lattice points.
- Low energy observables are sensitive to short distance details: UV/IR mixing [Seiberg-Shao 2020, Gorantla-Lam-Seiberg-SHS 2021].

Fractons

- Fractons [Chamon '05, Haah '11, Vijay-Haah-Fu '16...] are a large class of 3+1d gapped lattice spin models with many peculiar features. Large ground state degeneracy $\sim 2^{\#L}$, where L is the number of lattice sites in every direction, reflecting UV/IR mixing.
- Many fracton models have subsystem symmetries, in which case the peculiarities are universally captured by the symmetries and their anomalies [Seiberg-SHS '20, Burnell-Devakul-Gorantla-Lam-SHS '21] Generalized Landau paradigm.
- Fractons do **not** admit a conventional continuum field theory limit. Progress in extending the framework of QFT to incorporate these new phases of matter. Higher-rank gauge theory of subsystem symmetries [Pretko 2016x2, Slagle-Kim '17, Bulmash-Barkeshli '18, Ma-Hermele-Chen '18, You-Devakul-Sondhi-Burnell '19, Seiberg-Shao '20, Gorantla-Lam-Seiberg-SHS '20, Qi-Radzihovsky-Hermele '20, Slagle '21, Geng-Kachru-Karch-Nally-Rayhaun '21, Slagle-Hsin '21, Luo-Spieler-Sun-Karch '22...].

Compact Lifshitz theory

- There are even weirder global symmetries in other exotic models motivated by condensed matter systems [Haah 2011, Yoshida 2013, Ma et al. 2020,...].
- Compact Lifshitz theory [Henley 1996, Moessner-Sondhi-Fradkin 2001, Vishwanath-Balents-Senthil 2003,..., Lake-Hermele-Senthil 2022]: (Here ∇^2 is the spatial Laplacian)

$$\mathcal{L} = \frac{1}{2} (\partial_{\tau} \phi)^2 + \frac{1}{2} (\nabla^2 \phi)^2 , \qquad \phi \sim \phi + 2\pi$$

• This continuum theory is ambiguous [Gorantla-Lam-Seiberg-SHS 2022]. For example, on a torus of length ℓ , $\phi = 2\pi nx/\ell$ is a zero-energy solution for all integers n, hence infinite ground state degeneracy. Requires lattice regularization.

GSD = Complexity

[Gorantla-Lam-SHS 2022]

- We discretize the space by a lattice graph.
- In a natural regularization of the theory, the ground state degeneracy (GSD) equals the number of spanning trees of the spatial graph, which is a common measure of complexity in graph theory.
- UV/IR mixing: the GSD, which is an IR observable, equals the complexity of the UV discretization of space.
- New QFT? What is QFT?

Non-invertible Symmetries

Generalized global symmetries

Properties of symmetry op.	Ordinary symmetry	Higher-form symmetry	Subsystem symmetry	Non-invertible symmetry
Codimension in spacetime	1	> 1	> 1	≥ 1
Topological	yes	yes	not completely but conserved in time	yes
Fusion rule	group $g_1 \times g_2 = g_3$	group $g_1 \times g_2 = g_3$	group $g_1 \times g_2 = g_3$	category $\mathcal{D} \times \mathcal{D}^{\dagger} \neq 1$

"What's done cannot be undone."

- Conventionally, a global symmetry is implemented by a unitary operator acting on the Hilbert space [Wigner 1931].
- In particular, conventional symmetry transformations have inverses and can be undone.
- In recent years, we saw rapid developments of a novel kind of global symmetries: non-invertible global symmetry [Bhardwaj-Tachikawa 2017, Chang-Lin-SHS-Wang-Yin 2018, Komargodski-Ohmori-Roumpedakis-Seifnashri 2020, ... Choi-Cordova-Hsin-Lam-SHS 2021, Kaidi-Ohmori-Zheng 2021,...].
- It is not implemented by a unitary operator and does not have an inverse. Yet it is an RG-flow invariant and leads to matching conditions.
- Lattice realization [Feiguin et al. 2006, Aasen-Fendley-Mong 2016, 2020, Koide-Nagoya-Yamaguchi 2021, ...]. Also known as the algebraic higher symmetry in CMT [Ji-Wen 2019, Kong-Lan-Wen-Zhang-Zheng 2020].

Non-invertible symmetry in QED

• I will discuss one such non-invertible symmetry that exists in Nature — 3+1d QED in the massless limit:

$$\mathcal{L} = \frac{1}{4e^2} F_{\mu\nu} F^{\mu\nu} + i \overline{\Psi} (\partial_{\mu} - i A_{\mu}) \gamma^{\mu} \Psi$$

• It is commonly stated that the classical $U(1)_A$ axial symmetry

$$\Psi \to \exp\left(\frac{i\alpha}{2}\gamma_5\right)\Psi$$
 , $\alpha \sim \alpha + 2\pi$

is broken by the ABJ anomaly quantum mechanically [Adler 1969, Bell-Jackiw 1969].

• Recently, it was realized that the continuous, invertible $U(1)_A$ axial symmetry is not completely broken, but it is resurrected as a discrete, non-invertible global symmetry labeled by the rational numbers [Choi-Lam-SHS 2022, Cordova-Ohmori 2022].

• The axial current $j_\mu^A=\overline{\Psi}\gamma_5\gamma_\mu\Psi$ obeys the anomalous conservation equation $d\star j^A=\frac{1}{4\pi^2}F\wedge F$

$$d \star j^A = \frac{1}{4\pi^2} F \wedge F$$

Naively, we can define the symmetry operator

$$U_{\alpha}(M) = \exp(\frac{i\alpha}{2} \oint_{M} \star j^{A})$$

- However, it is **not** conserved (topological) because of the anomalous conservation equation.
- Adler defined a gauge non-invariant current which is formally conserved, $d\star\hat{\jmath}^A=0$,

$$\star \hat{\jmath}^A \equiv \star j^A - \frac{1}{4\pi^2} A dA$$

But the symmetry operator is **not** gauge invariant on a general three-manifold M

$$\widehat{U}_{\alpha}(M) = \exp\left[\frac{i\alpha}{2} \oint_{M} \left(\star j^{A} - \frac{1}{4\pi^{2}} A dA \right) \right]$$

Dilemma

Operator	Gauge-invariant?	Conserved (topological)?
$U_{\alpha}(M) = \exp(\frac{i\alpha}{2} \oint_{M} \star j^{A})$		X
$\widehat{U}_{\alpha}(M) = \exp\left[\frac{i\alpha}{2} \oint_{M} \left(\star j^{A} - \frac{1}{4\pi^{2}} A dA\right)\right]$	X	

Rational angles

 Let us be less ambitious, and assume the axial rotation angle is a fraction:

$$\alpha = \frac{2\pi}{N}$$

$$\widehat{U}_{\frac{2\pi}{N}}(M) = \exp\left[\oint_{M} \left(\frac{2\pi i}{2N} \star j^{A} - \frac{i}{4\pi N}AdA\right)\right]$$

• The operator $\widehat{U}_{\frac{2\pi}{N}}(M)$ is still not gauge invariant because of the fractional Chern-Simons term.

Fractional quantum Hall state

"
$$-\frac{i}{4\pi N} \oint_M AdA$$
"

- In condensed matter physics, this action is commonly used to describe the $\nu=1/N$ fractional quantum Hall effect (FQHE) in 2+1d.
- It is however not gauge invariant. Fortunately, there is a well-known fix to this issue.
- The more precise, gauge invariant Lagrangian for the FQHE is

$$\oint_{M} (\frac{iN}{4\pi} ada + \frac{i}{2\pi} adA)$$

where α is a dynamical U(1) gauge field living on the 2+1d manifold M.

• The two actions are related by illegally integrating out α to obtain " $\alpha = -\frac{A}{N}$ ".

Back to QED

[Choi-Lam-SHS 2022, Cordova-Ohmori 2022]

• Motivated by the discussion of FQHE in 2+1d, we define a new operator $\mathcal{D}_{1/N}(M)$ in 3+1d QED: (Easy to generalize to $\mathcal{D}_{p/N}$ with coprime p,N)

$$\widehat{U}_{\frac{2\pi}{N}}(M) = \exp\left[\oint_{M} \left(\frac{2\pi i}{2N} \star j^{A} - \frac{i}{4\pi N}AdA\right)\right]$$
a: auxiliary field on M
A: bulk gauge field

$$\mathcal{D}_{1/N}(M) \equiv \exp\left[\oint_{M} \left(\frac{2\pi i}{2N} \star j^{A} + \frac{iN}{4\pi} ada + \frac{i}{2\pi} adA\right)\right]$$

- Easy to generalize to $\mathcal{D}_{p/N}$.
- The new operator is gauge-invariant and conserved (topological). The price we pay is that it **NOT** invertible.

$$\mathcal{D}_{1/N} \times \mathcal{D}_{1/N}^{\dagger} = \exp\left[\oint_{M} \left(\frac{iN}{4\pi}ada - \frac{iN}{4\pi}\bar{a}d\bar{a} + \frac{i}{2\pi}(a - \bar{a})dA\right)\right] \neq 1$$

Non-invertible global symmetry

Operator	Gauge- invariant?	Conserved (topological)?	Invertible?
$U_{\alpha}(M) = \exp(\frac{i\alpha}{2} \oint_{M} \star j^{A})$	✓	X	N/A
$\widehat{U}_{\alpha}(M) = \exp\left[\frac{i\alpha}{2} \oint_{M} \left(\star j^{A} - \frac{1}{4\pi^{2}} A dA \right) \right]$	X		
$\mathcal{D}_{\frac{1}{N}}(M) = \exp\left[\oint_{M} \left(\frac{2\pi i}{2N} * j^{A} + \frac{iN}{4\pi} ada + \frac{i}{2\pi} adA\right)\right]$	✓		X

Electron mass

- Naturalness ['t Hooft 1980]: Impose a global symmetry group G. The Lagrangian should include all G-invariant terms with coefficients of order one with no fine-tuning.
- Massless QED Lagrangian: $\mathcal{L} = \frac{1}{4e^2} F_{\mu\nu} F^{\mu\nu} + i \overline{\Psi} (\partial_{\mu} i A_{\mu}) \gamma^{\mu} \Psi$
- The electron mass term $m\overline{\Psi}\Psi$ violates the non-invertible global symmetry.
- Therefore, electron is naturally massless in QED because of the noninvertible global symmetry.
- See [Cordova-Ohmori 2022] for more discussions on naturalness in axion physics.

't Hooft Naturalness

III2. NATURALNESS IN QUANTUM ELECTRODYNAMICS

Quantum Electrodynamics as a renormalizable model of electrons (and muons if desired) and photons is an example of a "natural" field theory. The parameters α , m_e (and m_μ) may be small independently. In particular m_e (and m_μ) are very small at large μ . The relevant symmetry here is chiral symmetry, for the electron and the muon separately. We need not be concerned about the Adler-Bell-Jackiw anomaly here because the photon field being Abelian cannot acquire non-trivial topological winding numbers 4).

't Hooft, Naturalness, chiral symmetry, and spontaneous chiral symmetry breaking (1980)

QCD and pion decay

[Choi-Lam-SHS 2022]

• Below the electroweak scale, the massless QCD Lagrangian for the up and down quarks has an axial global symmetry (corresponding to π^0)

$$U(1)_{A3}: \binom{u}{d} \to \exp(i\alpha\gamma_5\sigma_3) \binom{u}{d}$$

- The ABJ anomaly with the electromagnetic $U(1)_{EM}$ gauge symmetry turns $U(1)_{A3}$ into an infinite non-invertible global symmetry $\mathcal{D}_{p/N}$.
- The $\pi^0 F \wedge F$ coupling in the IR pion Lagrangian is necessary to match this non-invertible **global** symmetry in QCD.
- To put it in the maximally offensive way, the neutral pion decays $\pi^0 \to \gamma \gamma$ because of the non-invertible global symmetry.

Conclusion

- We have discussed three generalizations of global symmetries, higher form symmetries, subsystem symmetries, and non-invertible symmetries. Many other generalizations.
- This more general perspective of global symmetry unifies many known phenomena into a coherent framework.
 - Generalized global symmetries and their anomalies provide an invariant characterization of many topological phases of matter such as fractons. [John's talk]
- More importantly, they lead to new dynamical consequences that are otherwise obscured.
 - Generalizations of the 't Hooft anomaly matching condition lead to nontrivial constraints on renormalization group flows. Naturalness problems?
- New symmetries in new and old QFTs, including our Nature!

Generalized global symmetries

Properties of symmetry op.	Ordinary symmetry	Higher-form symmetry	Subsystem symmetry	Non-invertible symmetry
Codimension in spacetime	1	> 1	> 1	≥ 1
Topological	yes	yes	not completely but conserved in time	yes
Fusion rule	group $g_1 \times g_2 = g_3$	group $g_1 \times g_2 = g_3$	group $g_1 \times g_2 = g_3$	category $\mathcal{D} \times \mathcal{D}^{\dagger} \neq 1$

Thank you for listening!

Non-invertible symmetry

Above I mostly focus on codim-1 non-inv op. Many many other developments not listed.

Non-invertible symmetries in our dimensions

- Non-invertible symmetries exist in many familiar lattice and continuum quantum systems: 3+1d Maxwell theory, Yang-Mills theory, QED, QCD, $\mathcal{N}=4$ super Yang-Mills...
- Some of them (but not all) arise from invertible symmetries via gauging.
- They have generalized anomalies which lead to nontrivial constraints on renormalization group flows [Choi-Cordova-Hsin-Lam-SHS 2021,2022, Kaidi-Ohmori-Zheng 2021].
- They have been used to construct new QFTs via twisted compactifications [Kaidi-Zafrir-Zheng 2022].
- In quantum gravity, the no global symmetry conjecture is argued to be generalized to the absence of invertible and non-invertible global symmetries [Rudelius-SHS 2020, Heidenreich-McNamara-Montero-Reece-Rudelius-Valenzuela 2021, McNamara 2021].
- Other hidden symmetries in the Standard Model?